ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
P. Komarek (compiler), G.L. Kulcinski (compiler)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1075-1080
Nuclear Technology Development Issue and Need (Finesse) | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39915
Articles are hosted by Taylor and Francis Online.
This study considers an “alternate” approach to obtaining the data base required for building a tokamak demonstration reactor (DEMO). The present generation of physics machines (JET, TFTR, T-15, JT-60) is followed by a larger tokamak physics machine (called a NET-P class device) which achieves ignition and perhaps long pulse operation with a D/T-plasma and a respectable neutron wall loading, but with low duty factor and low neutron fluence. In parallel with this machine is a tandem mirror based technology test device (called TASKA class device), which provides high neutron fluence operation with a much smaller plasma volume and fusion power level. It also provides extended neutron testing of blanket modules, materials test samples, neutral beam and RF heating technology, magnets, tritium handling technology, and other components in an integrated facility. Furthermore, fission reactor facilities and simulation test stands would provide additional data. Even though this study is not all-inclusive, some important conclusions may be drawn. Overall, it appears that the “Alternate Plan” could provide the required physics and most of the engineering data for building a DEMO with less risk, in a shorter time, and with perhaps less cost than the present approach of building a single large tokamak aimed at both physics and engineering testing. This conclusion is valid in an overall sense, but some drawbacks remain. The detailed conclusions with respect to the various physics and technology aspects are given in the paper.