ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P.G. Sedano, J.M. Perlado
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1067-1071
Fusion Breeder | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39914
Articles are hosted by Taylor and Francis Online.
Several neutronic calculations have been made for a specific hybrid blanket design in order to evaluate the capability that a fissile zone offers to improve the tritium or fissile fuel production and the energy gain of a fusion blanket. Studies with different fissile zone thickness show the usefulness of thin fissile zones to get high tritium breeding rates. Better total material (tritium plus fissile) production requires thicker fissile zones. Comparisons have been made between the materials neutronic damage expected in a pure fusion blanket and in a hybrid one, with greater energy to damage ratios obtained for the hybrid. Also, greater energy and damage rates are obtained for harder spectra (more 14 MeV neutrons in source) because of the higher potential of 14 MeV neutrons to produce fission in the hybrid blanket.