ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Nobuyuki M. Masaki, Takakuni Hirabayashi, Masakatsu Saeki
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1337-1342
Tritium Technology | doi.org/10.13182/FST89-A39874
Articles are hosted by Taylor and Francis Online.
Behavior of sorption of tritium on surfaces of stainless steel, aluminum and borosilicate glass has been studied using gaseous tritium with high specific activity and the newly obtained knowledge has been applied to chemical and thermal decontamination of tritium-sorbing materials. The behavior depends on a character of surface of each material. The total amount of sorbed-tritium is evaluated as a function of time of exposure to gaseous tritium. The depth-profile of sorbed-tritium is obtained by chemical etching method. From these results, practical samples of stainless steel were decontaminated. The vacuum-bakeout for 21, hours at 773 K and dissolution by dilute (5%) HCl for 2 hours enable us to obtain the decontamination factor of 200.