ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. F. Bourque
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1270-1274
Commercial Reactors, Economics and Power Conversion | doi.org/10.13182/FST89-A39864
Articles are hosted by Taylor and Francis Online.
Cascade is an ICF reactor concept with a flowing ceramic granule blanket operating at high temperatures (≤ 1600K). For electical power conversion, we examined three options: (1) conventional Rankine cycle using steam, (2) closed cycle Brayton helium gas turbine, and (3) the Field cycle, which is a hybrid Brayton/Rankine cycle using steam. We found the Brayton cycle to be the most suitable choice. The reference cycle chosen has a peak turbine nozzle inlet temperature of 1300K and a net efficiency of 54.8%. Reheats are an unnecessary complication which, in this case, do not increase efficiency. On the other hand, intercoolers between compressor stages are beneficial. Most of the components can be heat-resisting metal alloy, with ceramics needed only in a limited number of high temperature components. The Field cycle has both elements of the Rankine and Brayton, performance is somewhere in between, and steam pressures are lower than Rankine. Temperatures are high, but low enough to use heat resisting alloys everywhere. It is discussed here because it may be of value in reactors with gas-cooled blankets.