ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. J. Dolan a, J. C. DeVeaux
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1130-1135
Alternate Fuels and Innovative Confinement Concept | doi.org/10.13182/FST89-A39845
Articles are hosted by Taylor and Francis Online.
The DT fusion neutron yield is calculated as a function of plasma current I for a variety of cases, assuming that the plasma temperature scales as To = Tr(I/Ir)y(ar/a)x where subscripts r denote reference values, and x and y are scaling parameters. The first-wall minor radius a is limited by the tolerable heat flux q. If β = 15 %, R = 4 m, I = 10 MA, and q = 3 MW/m2, then a = 0.43 m, and the 14 MeV neutron current at the first wall is about 1018 neutrons/m2s. a Work begun at Phillips Research Center. On leave from the University of Missouri-Rolla.