ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Layton J. Wittenberg
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1108-1113
Alternate Fuels and Innovative Confinement Concept | doi.org/10.13182/FST89-A39841
Articles are hosted by Taylor and Francis Online.
Several thousand tonnes of He-3 have been identified in various terrestrial reservoirs. The He-3 exists, however, as a dilute component, 10−9 to 10−12 volume fraction, of host gase such as the atmosphere or natural gas (methane). The production of He-3 is controlled, therefore, by the usage of the host gases. If the He-3 were separated from the host gases currently used, only 6 kg/yr would be obtained. With a vigorous expansion in the use of natural gas containing significant quantities of He-3, the production of He-3 could be increased to ∼ 25 kg/yr by the year 2000. This quantity of He-3 utilized in the d/He-3 fusion reaction would be sufficient to supply continuously several 100 MW fusion electrical power demonstration plants.