ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
D.A. Ehst, S. Kim, Y. Gohar, L. Turner, D.L. Smith, R. Mattas
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1021-1031
Magnet Engineering, Design and Experiments — II | doi.org/10.13182/FST89-A39827
Articles are hosted by Taylor and Francis Online.
Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA ⋅ cm−2 (at 77 K and ∼ 10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA ⋅ cm−2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼ 7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼ 3% cost saving is possible for pulsed tokamaks.