ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D.S. Barnett, M.S. Kazimi
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 839-846
Safety and Environment — I | doi.org/10.13182/FST89-A39799
Articles are hosted by Taylor and Francis Online.
The LITFIRE code was modified and used to model lithium chemical reactions with steam-air mixtures in situations representative of accidental spills in fusion reactors. New water pool nodes were added to the primary and secondary cells representing the reactor and its building. An iterative energy balance routine was developed to determine the temperature of the cell gas; heat transfer to structures was modified to include the effect of water condensation and the cell gas emissivity calculation was changed to account for the presence of polar water vapor molecules. Calculations were performed describing a spill on the building floor as well as a spill within the plasma chamber. Humidity and steam injection were also represented. The results indicated that the primary effect of the steam was to raise the emissivity of the cell gas, and thus the gas temperature and pressure, while reducing somewhat the temperatures of both the lithium combustion zone above the pool and the lithium pool itself.