ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
D.A. O'Brien, D. Steiner
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 809-814
Safety and Environment — I | doi.org/10.13182/FST89-A39794
Articles are hosted by Taylor and Francis Online.
This paper presents a probabilistic approach for mechanical design problems and applies this approach to a fusion reactor first wall design analysis. The method developed is based on Response Surface Methods, developing an approximation to a consequence of interest. A probability distribution for the consequence is found by Monte Carlo sampling of the input parameters probability distribution and then using the response surface. Adopting a defined criteria for failure, a probability of the consequence exceeding the criteria is found. In this paper the method is applied to the examination of neutron wall load implications. The motivation for this work is to provide an additional tool for design development and assessment.