ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D.A. O'Brien, D. Steiner
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 809-814
Safety and Environment — I | doi.org/10.13182/FST89-A39794
Articles are hosted by Taylor and Francis Online.
This paper presents a probabilistic approach for mechanical design problems and applies this approach to a fusion reactor first wall design analysis. The method developed is based on Response Surface Methods, developing an approximation to a consequence of interest. A probability distribution for the consequence is found by Monte Carlo sampling of the input parameters probability distribution and then using the response surface. Adopting a defined criteria for failure, a probability of the consequence exceeding the criteria is found. In this paper the method is applied to the examination of neutron wall load implications. The motivation for this work is to provide an additional tool for design development and assessment.