ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. E. Fenstermacher, R. S. Devoto, R. H. Bulmer, J. D. Lee, J. R. Miller, J. H. Schultz
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 740-745
Plasma Heating and Current Drive-I | doi.org/10.13182/FST89-A39784
Articles are hosted by Taylor and Francis Online.
The physics and engineering guidelines for the ITER device are shown to lead to viable physics operating points for a steady state tokamak power reactor. Non-inductive current drive is provided in steady state by high energy neutral beam injection in the plasma core, lower hybrid slow waves in the outer regions of the plasma and bootstrap current. Plasma gain Q (≡ fusion power/input power) in excess of 20 and average neutron wall loading, <Γ> ≈2.0 MW/m2 are predicted in a device with major radius, R0 = 7.5 m and minor radius, a = 2.8 m.