ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
M. E. Fenstermacher, R. S. Devoto, R. H. Bulmer, J. D. Lee, J. R. Miller, J. H. Schultz
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 740-745
Plasma Heating and Current Drive-I | doi.org/10.13182/FST89-A39784
Articles are hosted by Taylor and Francis Online.
The physics and engineering guidelines for the ITER device are shown to lead to viable physics operating points for a steady state tokamak power reactor. Non-inductive current drive is provided in steady state by high energy neutral beam injection in the plasma core, lower hybrid slow waves in the outer regions of the plasma and bootstrap current. Plasma gain Q (≡ fusion power/input power) in excess of 20 and average neutron wall loading, <Γ> ≈2.0 MW/m2 are predicted in a device with major radius, R0 = 7.5 m and minor radius, a = 2.8 m.