ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. D. Galambos, D. J. Strickler, Y-K. M. Peng, R. L. Reid
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 483-488
Plasma Engineering | doi.org/10.13182/FST89-A39746
Articles are hosted by Taylor and Francis Online.
Trade studies are performed to determine the optimum plasma elongation for a next-step tokamak such as the International Thermonuclear Experimental Reactor. Degradations of the plasma beta limit for high elongations and poloidal field coil scaling with elongation are included in the analysis. When plasma ignition is required using confinement scalings that include direct plasma current or power degradation terms, the optimum elongation is between 2.5 and 2.9, but generally the minimum-cost curve is relatively flat for elongations over 2.3. When confinement scalings that depend only on size are used or when only current drive performance is required, the optimum elongation is near 2.3. Also, when only a plasma current and neutron wall load are used as plasma performance limits, the optimum elongation is between 2.6 and 2.8, but with small cost benefits above elongations of 2.3.