ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Z. J. Bergstrom, M. A. Cusentino, B. D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 122-135
Technical Note | doi.org/10.13182/FST16-121
Articles are hosted by Taylor and Francis Online.
Fusion reactor materials experience high ion fluxes and operating temperatures, which will ultimately produce subsurface helium and hydrogen bubbles in the tungsten divertor that can cause surface degradation and impact core plasma performance. Molecular dynamics simulations have been used to evaluate the behavior of hydrogen and helium near a 2-nm bubble or void below a tungsten surface as a function of surface orientation, temperature, gas atom concentration, initial hydrogen distribution, and depth below the surface. A clear tendency for hydrogen to segregate to the bubble-matrix interface is observed in these simulations, regardless of the initial spatial distribution of the hydrogen or simulation parameters. This segregation is due in part to a local minimum in the hydrogen energy at the periphery of the bubble. Further work is required to fully characterize the mechanism of this behavior and to assess the quantities of hydrogen in the bubble and at the bubble periphery.