ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Karl D. Hammond, Francesco Ferroni, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 7-21
Technical Paper | doi.org/10.13182/FST16-110
Articles are hosted by Taylor and Francis Online.
We analyze the effect of subsurface prismatic dislocation loops on the surface morphology and helium clustering behavior of plasma-facing tungsten through the use of molecular dynamics simulations that are moderately large in scale, consisting of approximately 830 000 atoms, and extend to times on the order of 1 μs. This approach eliminates some finite-size effects common in smaller simulations and reduces the flux to~5.5 × 1026 m−2 s−1, including ions that reflect back into the plasma—this flux is a factor of ~15 lower than is typically used in smaller simulations. These results indicate that prismatic loops with radii of ~3 nm that are centered 10 nm below the surface with Burgers vectors parallel to the surface cause helium atom clusters to accumulate at the edge of the dislocation core relatively quickly—within 100 to 150 ns of the onset of plasma exposure. Subsequent growth of these clusters, however, is relatively minimal even out to 1 μs or more. This is partially explained by the relatively high helium implantation flux, which causes bubbles to accumulate 0 to 7 nm below the surface and block the region of the metal containing the dislocation, but this is only part of the explanation. Another effect results from the strain field around the loop itself. The compressive regions along the direction of the Burgers vector repel helium, but the tensile region initially attracts helium and traps it. However, we believe that the attractive tensile stress region is effectively shielded by the formation of helium clusters on and above it, and these bubbles subsequently experience relatively slow growth.