ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
J. W. Weidner, G. L. Kulcinski, J. F. Santarius, R. P. Ashley, G. Piefer, B. Cipiti, R. Radel, S. Krupakar Murali
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 539-543
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-8
Articles are hosted by Taylor and Francis Online.
This paper describes a proof of principle experiment to produce 13N using an inertial electrostatic confinement (IEC) fusion device. This radioisotope is often used in positron emission tomography scans to image the heart. The 10-minute half-life of 13N limits its use to those areas and clinics that possess an accelerator. A portable IEC device could be brought to remote locations, however, and produce short-lived PET isotopes on-site. Using the 14.7 MeV protons produced from the D-3He fuel cycle, the University of Wisconsin IEC device was used to produce approximately 4 - 8 Bq of 13N during two separate experiments.