ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
J. W. Weidner, G. L. Kulcinski, J. F. Santarius, R. P. Ashley, G. Piefer, B. Cipiti, R. Radel, S. Krupakar Murali
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 539-543
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-8
Articles are hosted by Taylor and Francis Online.
This paper describes a proof of principle experiment to produce 13N using an inertial electrostatic confinement (IEC) fusion device. This radioisotope is often used in positron emission tomography scans to image the heart. The 10-minute half-life of 13N limits its use to those areas and clinics that possess an accelerator. A portable IEC device could be brought to remote locations, however, and produce short-lived PET isotopes on-site. Using the 14.7 MeV protons produced from the D-3He fuel cycle, the University of Wisconsin IEC device was used to produce approximately 4 - 8 Bq of 13N during two separate experiments.