ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
B. B. Cipiti, G. L. Kulcinski
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 534-538
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A392
Articles are hosted by Taylor and Francis Online.
The high-energy 14.7 MeV protons generated from the D-3He fusion reaction can be used to produce medical radioisotopes. Steady-state D-3He operation is possible using Inertial Electrostatic Confinement (IEC); however, the location of the reactions must be known to use them effectively for isotope production. In the University of Wisconsin IEC Device, it has been found that as much as 2/3 of the total D-3He reaction rate can be due to embedded fusion reactions, reactions occurring within the cathode due to ion implantation. Therefore, the cathode surface sees a large, high-energy proton flux. Using a solid molybdenum cathode, and taking advantage of the embedded reactions, about 1 nCi of the medical isotope 94mTc was created via 94Mo(p,n)94mTc in a proof of principle experiment. This represents the first time the IEC concept has been used to produce a radioisotope using D-3He fusion.