ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
R. D. Boyd, A. M. May, P. Cofie, R. Martin
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 448-460
Technical Paper | doi.org/10.13182/FST16-102
Articles are hosted by Taylor and Francis Online.
In order to accommodate high thermal loading of single-side-heated (SSH) components, robust thermal management and high-heat-flux-removal approaches are essential to prevent thermal instability, thermal runaway, or a thermal spiral toward component failure. This paper presents multidimensional steady-state heat transfer measurements for a high-strength-copper SSH monoblock (heat sink) coolant flow channel with a helical wire insert (HI) and thermally developing internal laminar and turbulent water (coolant) flow. In the present case, the term “monoblock” refers to a solid parallelepiped with a central coolant flow channel along the axial centerline. In addition to producing local two-dimensional (axial and circumferential) flow boiling curves, multidimensional monoblock wall temperature distribution comparisons were made between flow channels with and without a HI. Further, flow boiling curves were measured up to ~4.0 MW/m2 at the inside flow channel wall. For the same inside flow channel temperature, the HI enhanced (1) the incident heat flux by >70% when compared with the flow channel without the insert and (2) the inside flow channel wall heat flux by up to a factor of 5 near the monoblock heated side and at all axial locations. These results can be used for validation of computational fluid dynamics codes.