ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
R. D. Boyd, A. M. May, P. Cofie, R. Martin
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 448-460
Technical Paper | doi.org/10.13182/FST16-102
Articles are hosted by Taylor and Francis Online.
In order to accommodate high thermal loading of single-side-heated (SSH) components, robust thermal management and high-heat-flux-removal approaches are essential to prevent thermal instability, thermal runaway, or a thermal spiral toward component failure. This paper presents multidimensional steady-state heat transfer measurements for a high-strength-copper SSH monoblock (heat sink) coolant flow channel with a helical wire insert (HI) and thermally developing internal laminar and turbulent water (coolant) flow. In the present case, the term “monoblock” refers to a solid parallelepiped with a central coolant flow channel along the axial centerline. In addition to producing local two-dimensional (axial and circumferential) flow boiling curves, multidimensional monoblock wall temperature distribution comparisons were made between flow channels with and without a HI. Further, flow boiling curves were measured up to ~4.0 MW/m2 at the inside flow channel wall. For the same inside flow channel temperature, the HI enhanced (1) the incident heat flux by >70% when compared with the flow channel without the insert and (2) the inside flow channel wall heat flux by up to a factor of 5 near the monoblock heated side and at all axial locations. These results can be used for validation of computational fluid dynamics codes.