ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Changle Liu, Damao Yao, Lei Li, Jie Zhang, Hao Yang, Yang Qiu, Xiang Gao
Fusion Science and Technology | Volume 70 | Number 3 | November 2016 | Pages 423-428
Technical Paper | doi.org/10.13182/FST15-246
Articles are hosted by Taylor and Francis Online.
Neutral beam injection (NBI) is a high-power auxiliary heating system for the EAST device. We present a thermal shield (TS) structure to protect the neck pipe of the EAST equatorial port to avoid damage from the NBI beam. Since the EAST port has a big trumpet structure, a straight section, and a small trumpet structure, to accommodate the port structure, a TS concept is put forward including its cooling system. The cooling loops and the sub-branches were designed with interfaces between the inner cooling branches. The heat removal capability is verified by a thermal hydraulics analysis based on ANSYS code. In particular, fabrication is addressed with technical processing technology, especially for the embedded cooling pipes in the heat sinks. The pipes are checked for leaks after bending and the embedding processing. The assembly activities are demonstrated in the spatial space zones of the port before the engineering installation. It is confirmed that the TS structure is safe and will run feasibly in the EAST discharge. It is indicated that the TS structure can provide thermal shielding and remove heat for the NBI device in the port region.