ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
John Sheffield, Stanley L. Milora
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 14-35
Technical Paper | doi.org/10.13182/FST15-157
Articles are hosted by Taylor and Francis Online.
The original generic magnetic fusion reactor paper was published in 1986 for deuterium-tritium reactors. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But, these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. In addition, today’s inflation and interest rates are low, leading to a cost of money well below that used in the original study. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermoelectric efficiency, electrical power output, and the present day’s low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux of 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the possible use of niobium-titanium coils are also investigated. It should be emphasized that the variation in the COEs is important rather than their absolute values.