ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Hongda He, J. Q. Dong, Zhixiong He, K. Zhao
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 54-61
Technical Paper | doi.org/10.13182/FST15-169
Articles are hosted by Taylor and Francis Online.
The density gradient of fast ions is the main driving force for fishbone instability that in turn results in fast ion loss. It is possible to reduce the instability by eliminating the density gradient of the fast ions by employing dual neutral beam injection (DNBI) in tokamak plasmas. The dispersion relation for the fishbone instability is applied to the case of DNBI with suitable fast ion distribution functions. The results show that the density distribution of fast ions of DNBI can bring about a stable window that is a range of values for the distance between the on-axis beam and the off-axis beam that yields an overall stabilization of the resultant fishbone mode. The width of the stable window increases linearly with the position of the safety factor q = 1 magnetic flux surface increasing. In addition, the width of the stable window becomes wider for a more peaked density profile of fast ions and keeps constant for a peaked enough density profile of fast ions. The growth rates of the fishbone modes dramatically decrease with the intensity ratio of off-axis neutral beam injection (NBI) and on-axis NBI, and the critical beta values of fast ions increase with the intensity ratio increasing. Fishbone modes can be avoided with DNBI, which may be an effective method to prevent fast ion loss resulting from fishbone instabilities.