ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Simppa Äkäslompolo, Taina Kurki-Suonio, Seppo Sipilä, ASCOT Group
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 620-627
Technical Paper | doi.org/10.13182/FST15-184
Articles are hosted by Taylor and Francis Online.
Measuring fast ions, most notably fusion alphas, in ITER and future reactors remains an issue that still lacks an adequate solution. Numerical simulations are invaluable in testing the potential and limitations of various proposed diagnostics. However, the validity of the numerical tools first has to be checked against results from existing tokamaks. In this contribution, various synthetic diagnostics for fast ions (collective Thomson scattering, neutral particle analyzer, neutron camera, infrared measurements, fast ion loss detector, and activation probe) from the orbit-following Monte Carlo code ASCOT are compared to measurements from several tokamaks (ASDEX Upgrade, DIII-D, and JET). Within the limitations of the physics included in the numerical model and availability of input data from experiments, the agreement between synthetic data and measurements is found to be quite good.