ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
P. C. de Vries, G. Pautasso, D. Humphreys, M. Lehnen, S. Maruyama, J. A. Snipes, A. Vergara, L. Zabeo
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 471-484
Technical Paper | doi.org/10.13182/FST15-176
Articles are hosted by Taylor and Francis Online.
To protect ITER from the high thermal and electromagnetic loads resulting from disruptions, prevention of such events is an essential part of the ITER plasma control system, backed up by an effective and reliable disruption mitigation system (DMS). An important aspect of the mitigation action is its trigger, the balanced decision that a disruption can no longer be prevented by scenario or stability control action and that mitigating action needs to be taken. This paper discusses the requirements for this decision process or trigger for the DMS, the expected timescales, the reliability and performance, and the possible strategy of how this may be developed for ITER high-performance operation.