ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
F. Warmer, C. D. Beidler, A. Dinklage, Y. Turkin, R. Wolf
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 727-740
Technical Paper | doi.org/10.13182/FST15-131
Articles are hosted by Taylor and Francis Online.
In fusion power plant studies, a high confinement improvement with respect to empirical scaling is often assumed in the design of compact machines. In this work, the limits of such a confinement enhancement are studied for a helical-axis advanced stellarator (HELIAS).
As a first exercise, the well-established power balance approach is used to investigate the impact of confinement enhancement (in terms of the ISS04 renormalization factor) on the required size of HELIAS power plants. It is found that both a lower (0.5) and an upper limit (1.5 to 1.7) exist for which, respectively, ignition is no longer possible or further confinement enhancement irrelevant due to physics limits.
In the second part of the work, a predictive neoclassical transport model is introduced and employed to determine a self-consistent confinement time based on transport modelling. It is found that the confinement enhancement with respect to the ISS04 scaling decreases in comparison to Wendelstein 7-X as the device is scaled to reactor size, dropping from ~2.5 to a range of 1.2 to 1.3. This behavior is explained with underlying scaling relations and transport effects. The results from both models are consistent and important for future HELIAS systems studies.