ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
W. T. Shmayda, M. Sharpe, A. M. Boyce, R. Shea, B. Petroski, W. U. Schröder
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 766-771
Technical Paper | doi.org/10.13182/FST14-913
Articles are hosted by Taylor and Francis Online.
The impact of water vapor and temperature on the release of tritium from stainless steel was studied. Degreased stainless steel samples loaded with tritium at room temperature following a 24-h degassing in vacuum at room temperature were subjected to increasing temperatures or humidity. In general, increasing either the sample temperature or the humidity causes an increased quantity of tritium to be removed. Increasing the temperature to 300°C in a dry gas stream results in a significant release of tritium and is therefore an effective means for reducing the tritium inventory in steel. For humid purges at 30°C, a sixfold increase in humidity results in a tenfold increase in the peak outgassing rate. Increasing the humidity from 4 parts per million (ppm) to 1000 ppm when the sample temperature is 100°C causes a significant increase in the tritium outgassing rate. Finally, a simple calculation shows that only 15% of the activity present in the sample was removed in these experiments, suggesting that the surface layer of adsorbed water participates in regulating tritium desorption from the surface.