ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Gautam Pulugundla, Sergey Smolentsev, Tyler Rhodes, Charlie Kawczynski, Mohamed Abdou
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 684-689
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-983
Articles are hosted by Taylor and Francis Online.
Interaction between liquid metal flows and non-uniform magnetic fields occurs in certain regions of fusion power reactors such as the breeding blanket access pipes. Here, the resulting high MHD pressure drop leads to numerous design challenges. Therefore, in this paper we perform numerical simulations to analyze the effect of a non-uniform transverse magnetic field on a liquid metal flow in a straight electrically conducting pipe. In particular, we perform parametric analyses at different conductance ratios and magnetic interaction parameters to quantify their effect on MHD pressure drop in pipes. The results also help in establishing a range for the control parameters in which the flow transforms from a quasi-fully developed to a fully three-dimensional state.