ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
R. Raman, T. Brown, L. A. El-Guebaly, T. R. Jarboe, B. A. Nelson, J. E. Menard
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 674-679
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-976
Articles are hosted by Taylor and Francis Online.
Economics, design simplifications, and design optimizations, may require a Fusion Nuclear Science Facility (FNSF) based on an ST or AT concept to generate the plasma currents required for initial plasma start-up to be produced without reliance on the conventional central solenoid. The method of Transient Coaxial Helicity Injection (CHI) has been successfully used on the HIT-II device and on the thirty times larger in volume Proof-of-Principle NSTX device, to generate over 200 kA of plasma current, and to demonstrate the physics capability of this concept for the generation of substantial amounts of plasma currents in larger devices. The conceptual design of a transient CHI system for a ST-FNSF (BT = 3 T, R = 1.7 m, A = 1.7, Ip = 10 MA) is described, in which the projected start-up current generation potential is about 2 MA.