ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
Hiroki Shishido, Noritaka Yusa, Hidetoshi Hashizume, Yoshiki Ishii, Norikazu Ohtori
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 669-673
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-975
Articles are hosted by Taylor and Francis Online.
This study evaluates the physical properties of the molten salt Flinabe, using molecular dynamics simulations to discuss its applicability to a fusion blanket system. More specifically, the simulations calculate the density and viscosity of Flinabe to facilitate further discussion of the applicability from the viewpoint of the heat removal of the first wall. The results of the simulations are compared with data reported in earlier publications, which support the validity of the simulations. This study reveals that Flinabe tends to have lower viscosity than Flibe even when they contain almost the same BeF2. Analyzing the results of the simulations confirms that the degree of polymerization in Flinabe correlates with its viscosity, as that in Flibe does. The analyses also revealed, however, that the correlation in the case of Flibe is not directly applicable to the case of Flinabe.