ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Kazunari Katayama, Hiroki Ushida, Hideaki Matsuura, Satoshi Fukada, Minoru Goto, Shigeaki Nakagawa
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 662-668
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-968
Articles are hosted by Taylor and Francis Online.
Tritium production utilizing nuclear reactions by neutron and lithium in a high-temperature gas-cooled reactor is attractive for development of a fusion reactor. From viewpoints of tritium safety and recovery efficiency, tritium confinement is an important issue. It is known that alumina has high resistance for gas permeation. In this study, hydrogen permeation experiments in commercial alumina tubes were conducted and hydrogen permeability, diffusivity and solubility were evaluated. By using obtained data, tritium permeation behavior from an Al2O3-coated Li-compound particle was simulated. Additionally, by using literature data for hydrogen behavior in zirconium, an effect of Zr incorporation into an Al2O3 coating on tritium permeation was discussed. It was indicated that the majority of produced tritium was released through the Al2O3 coating above 500 °C. However, it is expected that total tritium leak is suppressed to below 0.67 % of total tritium produced at 500 °C by incorporating Zr fine particles into the inside of Al2O3 coating, assuming tritium pressure inside particle is kept at the plateau pressure of the Zr hydride generation reaction.