ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kazuya Furuichi, Kazunari Katayama, Hiroyuki Date, Toshiharu Takeishi, Satoshi Fukada
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 458-464
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-969
Articles are hosted by Taylor and Francis Online.
In this study, tritiated water was poured in a packed bed of natural soil and subsequently distilled water was poured in the bed to recover tritium retained in the soil at room temperature. From tritium balance, 22.5 % (7.1 MBq) of input tritium (31.5 MBq) was retained in the soil bed. By distilled water purge, 70 % (5 MBq) of retained tritium was recovered but 30% (2.1MBq) was left. To recover residual tritium, the soil was immersed in distilled water for 531 days but the amount of tritium released to distilled water was slight (0.04 MBq). A part of the soil immersed in the water was taken out and heated up to 300°C under humid oxygen atmosphere. Tritium release terminated at about 50 hours. 11 % (0.23 MBq) of retained tritium was released. By heating to 1000°C, the release amount of tritium increased proportionally to the time and additional 4% (0.09 MBq) was released at 5 hours. The desorption rates of tritium in each process was quantified.
Tritium is quite slowly released from the natural soil exposed to tritiated water in water at room temperature. However, a long time heating by 1000°C would be required to try to recover all tritium from the contaminated soil positively, although tritium recovery was not completed in this work.