ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Kazuya Furuichi, Kazunari Katayama, Hiroyuki Date, Toshiharu Takeishi, Satoshi Fukada
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 458-464
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-969
Articles are hosted by Taylor and Francis Online.
In this study, tritiated water was poured in a packed bed of natural soil and subsequently distilled water was poured in the bed to recover tritium retained in the soil at room temperature. From tritium balance, 22.5 % (7.1 MBq) of input tritium (31.5 MBq) was retained in the soil bed. By distilled water purge, 70 % (5 MBq) of retained tritium was recovered but 30% (2.1MBq) was left. To recover residual tritium, the soil was immersed in distilled water for 531 days but the amount of tritium released to distilled water was slight (0.04 MBq). A part of the soil immersed in the water was taken out and heated up to 300°C under humid oxygen atmosphere. Tritium release terminated at about 50 hours. 11 % (0.23 MBq) of retained tritium was released. By heating to 1000°C, the release amount of tritium increased proportionally to the time and additional 4% (0.09 MBq) was released at 5 hours. The desorption rates of tritium in each process was quantified.
Tritium is quite slowly released from the natural soil exposed to tritiated water in water at room temperature. However, a long time heating by 1000°C would be required to try to recover all tritium from the contaminated soil positively, although tritium recovery was not completed in this work.