ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Westinghouse signs $80B contract to meet AI demand
The U.S. government has signed an $80 billion deal with Westinghouse Electric Company to build large-scale nuclear reactors to support growing electricity demand from artificial intelligence.
Claire Luttrell, Tim Bigelow, Ethan Coffey, Ira Griffith, Greg Hanson, Arnold Lumsdaine, Alex Melin, Chuck Schaich
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 402-406
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-980
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system will produce a high-intensity beam of electromagnetic radiation for plasma heating. A total of 20 MW of power will be transferred from 170 GHz gyrotrons through multiple transmission lines. The transmission lines consist of evacuated, aluminum, circularly corrugated waveguides that will each transmit up to 1.5 MW for up to 3600 seconds. The waveguides, as well as mirror and polarizer components, will be actively water cooled in order to support the heat load from the long-pulse high-power radiation. Transmission lines will be as long as 200 meters, made up of individual lengths of 2 to 4 meter pieces that are joined by couplings. These couplings must retain high vacuum during operation, and maintain a very high degree of straightness between adjacent waveguide pieces. Analyses have been performed to examine various parameters of the design of these couplings, and confirm that stringent criteria are met during installation and operation. Further couplings are used to join the waveguide to other transmission line components, such as miter bends, expansion units, and switches. All of these are analyzed to confirm structural integrity during operation.