ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
T. Brown, J. Menard, L. El-Gueblay, A. Davis
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 277-281
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-911
Articles are hosted by Taylor and Francis Online.
One of the goals of the PPPL Spherical Tokamak (ST) Fusion Nuclear Science Facility (FNSF) study was to generate a self-consistent conceptual design of an ST-FNSF device with sufficient physics and engineering details to evaluate the advantages and disadvantages of different designs and to assess various ST-FNSF missions. This included striving to achieve tritium self-sufficiency; the ability to provide shielding protection of vital components and to develop maintenance strategies that could be used to maintain the in-vessel components (divertors, breeding blankets, shield modules and services) and characterize design upgrade potentials to expanded mission evolutions.
With the conceptual design of a 2.2 m ST pilot plant design already completed emphasis was placed on evaluating a range of ST machine sizes looking at a major radius of 1m and a mid-range device size between 1 m and 2.2 m.
This paper will present an engineering summary of the design details developed from this study, expanding on earlier progress reports presented at earlier conferences that focused on a mid-size 1.7 m device. Further development has been made by physics in defining a Super-X divertor arrangement that provides an expanded divertor surface area and places all PF coils outside the TF coil inner bore, in regions that improve the device maintenance characteristics. Physics, engineering design and neutronics analysis for both the 1.7 m and 1 m device have been enhanced. The engineering results of the PPPL ST-FNSF study will be presented along with comments on possible future directions.