ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Satoshi Nakamoto, Yousuke Takeshita, Shota Hagihara, Takayuki Wada, Hiromasa Takeno, Yasuyoshi Yasaka, Yuichi Furuyama, Akira Taniike
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 166-170
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-900
Articles are hosted by Taylor and Francis Online.
With an aim to improve the total efficiency of a D-3He nuclear fusion direct energy conversion system, a secondary electron direct energy converter (SEDEC) is proposed. The incident high-energy protons in an SEDEC penetrate a large number of foil electrodes aligned in the direction of the proton beam, and emitted secondary electrons are recovered. The results of the initial experiments showed that most of the secondary electrons flowed into anteroposterior electrodes and did not arrive at the electron collector located alongside and perpendicular to the direction of the proton beam. A magnetic field was introduced to push the electrons toward the electron collector, but it was not effective for energy recovery. This technical note analyzes the trajectories of electrons in the presence of the magnetic field and proposes and examines a revised arrangement of permanent magnets. The arrangement of the magnets along one side of the proton beam greatly improved the energy recovery; however, the recovery level was lower than that without magnets.