ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
T. Yokoyama, M. Ichimura, A. Fukuyama, S. Sumida, M. Hirata, R. Ikezoe, Y. Iwamoto, T. Okada, K. Takeyama, S. Jang
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 185-189
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-899
Articles are hosted by Taylor and Francis Online.
On the GAMMA 10 tandem mirror, divertor simulation experiments progress with high-temperature plasmas produced by waves in ion-cyclotron range of frequency (ICRF) and open magnetic fields. In these experiments, high-temperature and high-density plasmas are required to be produced and controlled. In order to enhance the ion heating in the anchor cell, phase-control experiments, which use two ICRF antennas installed in the central cell and the anchor cell, are introduced. In these experiments, ICRF waves in the same frequency (10 MHz) are excited. Ion heating in the anchor cell is performed more effectively with phase control. In order to analyze wave propagation in the phase-control experiments, a three-dimensional full wave code (TASK/WF), in which parallel processing has been implemented recently, is introduced. In this technical note, we discuss ICRF wave excitation and propagation in the phase-control experiments. It is clearly observed by the experiments and wave analysis that the enhancement of ion heating in the anchor cell is performed by phase-control experiments.