ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. G. Cho, T. Lho, H. G. Choi, M.-K. Bae, I. J. Kang, D. H. Lee, S. K. Joo, K.-S. Chung
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 157-160
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-876
Articles are hosted by Taylor and Francis Online.
We investigated charged dust and its effect on RF plasma by using a planar electric probe in a large-scale device. In background plasmas, the particle density is 108 to 109 cm−3 and the electron temperature is 2 to 4 eV. When dust is contained in plasma, it is negatively charged by electrons attached to the dust. The charged dust density and the charge were calculated by comparing dusty helium plasma to pure helium plasma. Depending on the increase in the amount of dust, the charged dust density increases with the decrease in the charge due to depletion of the electrons in the background plasma. The results show that the charge changes the interactions between the dust and particles in the background plasma.