ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
K. Nojiri, M. Sakamoto, K. Oki, M. Yoshikawa, Y. Nakashima, M. Yoshikawa, A. Terakado, R. Nohara, M. Mizuguchi, T. Imai, M. Ichimura
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 120-124
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-893
Articles are hosted by Taylor and Francis Online.
In GAMMA 10/PDX, the relationship between electron density and temperature of the divertor simulation plasma in the divertor simulation experimental module (D-module) and the density of the upstream plasma has been studied. As the amount of gas (H2 and Ar) injected into the D-module increases, the line-averaged electron density (ne_WP) of the west plug plasma (i.e., upstream plasma) increases due to gas flow from the D-module to the upstream. The electron temperature of the divertor simulation plasma monotonically decreases with increase in ne_WP. The electron density of the divertor simulation plasma becomes saturated against increase in ne_WP when the plasma is sustained only by the ion cyclotron heating. This may suggest a sign of the beginning of the density roll-over. Additional electron cyclotron heating to the upstream plasma increases the density of both the upstream plasma and the divertor simulation plasma, and the saturated density of the divertor simulation plasma recovers to a linear dependence on ne_WP, suggesting an enhanced ionization of neutral gases in the upstream and the D-module.