ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
A. V. Anikeev, V. V. Prikhodko, D. V. Yurov
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 70-75
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-863
Articles are hosted by Taylor and Francis Online.
Substantial progress in experimental results was demonstrated over the last three years at the GDT facility (a hydrogen prototype of a fusion neutron source) in the Budker Institute: the electron temperature has been increased up to 0.6 keV, and the relative plasma pressure β has exceeded 0.5 in a quasi-stationary regime. These parameters are records for axisymmetric open mirror traps.
The first part of this paper presents the results of numerical simulations for a moderate fusion neutron source based on the achieved GDT experimental data. The second part of the paper is focused on the latest numerical studies of a fusion-fission hybrid system with a mirror-based neutron source.