ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Marius Zamfirache, Liviu Stefan, Anisia Bornea, Ioan Stefanescu
Fusion Science and Technology | Volume 67 | Number 3 | April 2015 | Pages 677-680
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T108
Articles are hosted by Taylor and Francis Online.
ICSI Rm. Valcea has developed an experimental pilot-scale installation for tritium and deuterium separation. The main objective of this pilot was to demonstrate the water detritiation technology and further to transfer this technology to CANDU nuclear power plant from CNE Cernavoda, in whose development program there is the achieving of a Tritium Removal Facility (since 2004).
The installation design was initiated in 1992, and in 1997 its construction was completed. Design and construction of this installation was performed similarly with chemical plants, specifically for hydrogen. Separation of isotopes was addressed in the first phase only regarding hydrogen and deuterium. In the next stage we started to transform it in a nuclear plant for processing tritium. Moving to tritium separation imposed the technological change of cryogenic distillation module aiming the tritium extraction at high concentrations.
Changes have been made with great efforts and consisted mainly of: redesign of the technological systems for nuclear material processing, applying specific codes and standards (ASME, Romanian nuclear specific pressure boundary prescriptions for code classification); design and implementation of new systems, classified as safety systems; redesign and implementation of command and control systems, complying with the requirements of reliability and maintenance required for the project promoted; revaluation of auxiliary systems (utilities, power supply, including UPS); introducing radiation protection systems, including secondary barriers; implementing and maintaining environment operational program specific to the new nuclear plant; developing and conducting safety analyzes; development of specific documentation to obtain the necessary permits for construction, commissioning and operation of the plant.
This paper presents the implications of moving from a chemical plant towards a nuclear installation applying codes and standards specifically to nuclear field. It is a lesson for those who approaches their research in this regard.