ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Kazuhiro Kobayashi, Yuji Torikai, Makiko Saito, Vladimir Alimov, Naoyuki Miya, Yoshitaka Ikeda
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 428-431
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T46
Articles are hosted by Taylor and Francis Online.
Disassembly of the JT-60U torus was started in 2010 after 18 years D2 operations. In future the vacuum vessel will be treated as non-radioactive ones after the clearance procedure under the Japanese regulation depending on the tritium (T) contamination level. Note that the vessel was manufactured from Inconel 625 steel. Therefore, it was very important to study the hydrogen isotope behavior in Inconel 625 from viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D2 (92.8 %) – T2 (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily. From these results, the behavior of tritium in the vacuum vessel of the JT-60U torus will be evaluated and discussed