ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Kazuhiro Kobayashi, Yuji Torikai, Makiko Saito, Vladimir Alimov, Naoyuki Miya, Yoshitaka Ikeda
Fusion Science and Technology | Volume 67 | Number 2 | March 2015 | Pages 428-431
Proceedings of TRITIUM 2013 | doi.org/10.13182/FST14-T46
Articles are hosted by Taylor and Francis Online.
Disassembly of the JT-60U torus was started in 2010 after 18 years D2 operations. In future the vacuum vessel will be treated as non-radioactive ones after the clearance procedure under the Japanese regulation depending on the tritium (T) contamination level. Note that the vessel was manufactured from Inconel 625 steel. Therefore, it was very important to study the hydrogen isotope behavior in Inconel 625 from viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D2 (92.8 %) – T2 (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily. From these results, the behavior of tritium in the vacuum vessel of the JT-60U torus will be evaluated and discussed