ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. S. Tillack, X. R. Wang, D. Navaei, H. H. Toudeshki, A. F. Rowcliffe, F. Najmabadi, ARIES Team
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 49-74
Technical Paper | doi.org/10.13182/FST14-790
Articles are hosted by Taylor and Francis Online.
ARIES-ACT1 is the latest in a series of tokamak power plant designs that capitalize on the high-temperature capabilities and attractive safety and environmental characteristics of SiC composites coupled with a self-cooled lead-lithium breeder. This combination offers both design simplicity and high performance, capable of operating at very high coolant outlet temperature in a moderately high-power-density device. Blankets are supported within a poloidally continuous He-cooled steel structural ring, which adds robustness and minimizes loads on the SiC modules. In order to withstand high local surface heat flux in the divertor (of the order of 14 MW/m2 time averaged), a helium-cooled tungsten-alloy divertor was adopted. About 25% of the total “high-grade” heat is thus removed by helium, to be combined with the blanket heat in order to feed the power cycle. In addition to the in-vessel power-producing elements of the design, this paper also summarizes the key features and analysis of the vacuum vessel and power conversion system.