ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
K. R. Schultz
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 393-399
Technical Paper | Fusion Energy - Tritium and Safety and Environment | doi.org/10.13182/FST03-A366
Articles are hosted by Taylor and Francis Online.
Hydrogen has captured the imagination of the technical community recently, with visions of improved energy security, reduced global warming, improved energy efficiency and reduced air pollution as potential benefits. A significant "Hydrogen Economy" is predicted that will reduce dependence on petroleum imports, and reduce pollution and greenhouse gas emissions. Such a hydrogen economy will need significant new sources of hydrogen. Virtually all our current hydrogen is produced from natural gas and is equivalent to 48 GW(t). Replacing this growing demand with a non-fossil, non-greenhouse gas emitting source represents a huge potential market for fusion.Hydrogen could potentially be produced from water using fusion energy by direct interaction of fusion products (charged particles, neutrons and gammas), and by electrolytic or thermochemical means. Significant effort was devoted to study of these possibilities in the 1970-80s. It is instructive to review these earlier studies today as interest in production of hydrogen is revived. Investigations into direct use of fusion products for radiolysis and "hot spot" chemistry found it was difficult to get much of the fusion energy into the reaction channels of interest. Use of fusion energy in heat-driven processes was more promising. Fusion blankets could give much higher temperatures than are possible from fission heat sources. Studies of high temperature electrolysis and thermochemical water splitting using this high temperature heat were promising. The requirement that fusion blankets breed tritium raises challenges, as the tolerance for tritium in the product hydrogen is extraordinarily low. Use of multiple coolant streams, multiple containment barriers and separate breeding and high temperature zones were proposed that appear to successfully address these concerns, but add complication. Fusion does have the potential to support the Hydrogen Economy as well as electricity production as long as care is given to maximizing the benefits and minimizing the liabilities inherent to fusion energy.