ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Richard B. Stephens, Tony Mroczkowski, Jane Gibson
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 132-135
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST38-132
Articles are hosted by Taylor and Francis Online.
Irregularities in ICF shells need to be characterized in detail. Outside and inside surface, and wall thickness fluctuations are all Raleigh-Taylor unstable and can cause a shell to fail during compression. Until recently we could only detect outside surface profile fluctuations, measured along three mutually perpendicular great circles and displayed as line graphs. Measurements, paths, and display have all been upgraded to improve our ability to see fluctuations. We have added a Wallmapper that can determine thickness along the same paths as the surface profiles. The thickness data can be subtracted from the outer surface profile to give a (low resolution) inner surface profile. We have measured the surface profiles along up to 8 paths, and have displayed these profiles wrapped around the image of a sphere. With sufficient paths, this format gives a sense of the 2-D surface fluctuations on the shell. These additions should help us to understand the nature of shell defects and optimize our production processes.