ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
D. C. Wilson, P. A. Bradley, S. R. Goldman, N. M. Hoffman, R. W. Margevicius, R. B. Stephens, R.E.Olson
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 16-21
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36109
Articles are hosted by Taylor and Francis Online.
Recent beryllium capsule designs have focussed on the lower temperatures and laser powers expected before the NIF laser reaches its full capability, 192 beams, 500TW, and 1.8MJ. First, several new designs are given with peak radiation temperatures for 250 to 280 eV. A 250eV design uses 2% oxygen dopant instead of 0.9% copper. Second, a radiography study of planar joints in S200D beryllium using a Cu, Au, Ag, Al, or Au/Cu braze quantified the diffusion away from the joint. LASNEX calculations show that Cu joint perturbations grow to large enough amplitude to preclude ignition. However by allowing the copper to diffuse twice as far as in these experiments (e.g. by holding at braze temperature longer), the joint calculates to be acceptable, and the capsule gives full yield. Aluminum diffuses extremely far from the joint, almost uniformly in the sample. Third, a capsule with a high Z shell and beryllium ablator calculates to ignite. As expected its ignition threshold is lower, about 70% of the implosion velocity for a capsule like the Be330. The extra tamping of DT bum by a 6 μm tungsten shell increases the yield from 17 to 32 MJ. The capsule radiates 3 MJ of this yield as X-rays. Unfortunately the capsule is more sensitive to DT ice roughness than the Be330 design, failing at 0.6μm roughness.