ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Jianqi Xi, Peng Zhang, Chaohui He, Mingjie Zheng, Hang Zang, Daxi Guo, Li Ma
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 235-244
Technical Paper | doi.org/10.13182/FST13-740
Articles are hosted by Taylor and Francis Online.
A molecular dynamics study has been performed to investigate the generation and evolution of damage states in irradiated β-SiC at high temperature. It is found that most of the C antisites (SiC) are created during the early collisional phase, while the Si antisites (CSi) are significantly produced during the thermal spike phase. A modified near-neighbor point defect density (NPDD) is introduced to study the spatial aggregation of different defects during the displacement cascades, and feature of defect clusters evolution is analyzed in details. The dominated types of vacancy clusters after the displacement cascades are two- and three-size chainlike ones. And the vacancy NPDD (V-NPDD) decreases as the recoil energy increases. Furthermore, after the thermal spike phase, there is an additional annealing process during which the interstitials and antisites turn into defect clusters, respectively.