ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Y. Hishinuma, T. Tanaka, T. Shinkawa, S. Murakami, K. Matsuda, T. Watanabe, T. Nagasaka, A. Sagara, T. Muroga
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 221-227
Technical Paper | doi.org/10.13182/FST13-762
Articles are hosted by Taylor and Francis Online.
Erbium oxide (Er2O3) coating layer is one of the suitable coatings to realize an advanced breeding blanket system because it has high electrical resistivity and hydrogen permeation suppression effect. In order to enhance these properties of Er2O3 coating, it is necessary to form a thick coating layer with high crystallinity. The formation of a double stacked coating layer on an austenitic stainless steel 316 substrate using an intermediate layer (buffer layer) was investigated for the thicker and high crystallinity of Er2O3 coating formation. Yttrium oxide (Y2O3) and cerium oxide (CeO2) were selected as buffer layer between the Er2O3 layer and austenitic stainless steel 316 substrate due to their similar lattice constant to that of Er2O3 crystal. The texture and grain growth direction of Er2O3 was controlled by the Y2O3 and CeO2 buffer layer. However, the suppression effect of hydrogen permeation by the double stacked coating was smaller than that of the single layer coating due to the thin Er2O3 formation.