ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
N. S. Klimov, V. L. Podkovyrov, A. M. Zhitlukhin, A. D. Muzichenko, D. V. Kovalenko, A. B. Putrik, I. B. Kupriyanov, R. N. Giniyatulin, A. A. Gervash, V. M. Safronov
Fusion Science and Technology | Volume 66 | Number 1 | July-August 2014 | Pages 118-124
Technical Paper | doi.org/10.13182/FST13-759
Articles are hosted by Taylor and Francis Online.
The beryllium (Be) plasma-facing components (PFCs) of the ITER first wall (FW) were tested in the plasma gun QSPA-Be under pulsed plasma heat loads of 0.5-ms duration relevant to those expected in ITER during transient plasma events (edge-localized modes and disruptions). The experiments were performed for different Be grades (Russian TGP-56FW and US S65-C). The measured Be melting threshold decreases from 0.5 MJm−2 down to 0.4 MJm−2 with Be initial temperature increasing in the range of 250–500 °C. Under plasma heat loads on the exposed surface below the melting point the Be PFC erosion was mainly due to melting of the plasma-facing and lateral edges of the Be tiles. Under plasma heat loads above the melting point the Be PFC erosion was mainly due to intense melt layer movement and splashing. The Be melt layer behavior at 0.5 and 1.0 MJm−2 is similar to early investigated W melt layer behavior at higher heat loads of 1.0 and 1.5 MJm−2 correspondingly. Unlike W the Be erosion rate significantly increases with initial temperature in the range of 250–500 °C. These experimental observations are supported by calculation of temperature dynamics and melt layer thickness dynamics.