ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Joakim Karlsson, Thomas Elevant
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 341-349
Technical Paper | doi.org/10.13182/FST98-A36
Articles are hosted by Taylor and Francis Online.
An heuristic approach has been adopted to obtain empirical scaling formulas for the dependence of neutron emission on predefined machine parameters, such as applied auxiliary heating power, plasma current IP, and toroidal magnetic field BT. The results are intended to be used to predict the neutron emission before each discharge. These formulas are of interest in their own right but more practically can be used as input to control software to pre-set the optimum precollimator apertures for neutron diagnostics such as spectrometers. Formulas have been obtained for data from plasma pulses during the years 1992 and (1994 + 1995), i.e., before and after the divertor installation and major modifications of the Joint European Torus (JET) vessel.Obtained scaling formulas for moderate beam power PNB show neutron emission after installation of the divertor to be lower than before. However, for high beam power, the scaling laws predict as large and even larger neutron emissions for the (1994 + 1995) neutral beam (NB)-heated plasmas as compared to 1992 plasmas. The dependence on radio-frequency (rf) heating power Prf is significantly larger in the scaling laws deduced prior to the divertor phase than after, which implies more efficient heating in 1992. With the exception of combined NB- and rf-heated plasma pulses, the dependence on plasma current has increased moderately after the modifications of JET. For all observations with combined NB and rf heating, the dependence on Prf is quite small, and the neutron production for this category of discharges is dominated by NB heating.A set of scaling laws is found that predicts the neutron emission within a factor of 2, which is consistent with our objective.