ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Joakim Karlsson, Thomas Elevant
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 341-349
Technical Paper | doi.org/10.13182/FST98-A36
Articles are hosted by Taylor and Francis Online.
An heuristic approach has been adopted to obtain empirical scaling formulas for the dependence of neutron emission on predefined machine parameters, such as applied auxiliary heating power, plasma current IP, and toroidal magnetic field BT. The results are intended to be used to predict the neutron emission before each discharge. These formulas are of interest in their own right but more practically can be used as input to control software to pre-set the optimum precollimator apertures for neutron diagnostics such as spectrometers. Formulas have been obtained for data from plasma pulses during the years 1992 and (1994 + 1995), i.e., before and after the divertor installation and major modifications of the Joint European Torus (JET) vessel.Obtained scaling formulas for moderate beam power PNB show neutron emission after installation of the divertor to be lower than before. However, for high beam power, the scaling laws predict as large and even larger neutron emissions for the (1994 + 1995) neutral beam (NB)-heated plasmas as compared to 1992 plasmas. The dependence on radio-frequency (rf) heating power Prf is significantly larger in the scaling laws deduced prior to the divertor phase than after, which implies more efficient heating in 1992. With the exception of combined NB- and rf-heated plasma pulses, the dependence on plasma current has increased moderately after the modifications of JET. For all observations with combined NB and rf heating, the dependence on Prf is quite small, and the neutron production for this category of discharges is dominated by NB heating.A set of scaling laws is found that predicts the neutron emission within a factor of 2, which is consistent with our objective.