ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
P. Chakraborty, P. K. Pradhan, R. K. Fotedar, N. Krishnamurthy
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 332-337
Technical Note | doi.org/10.13182/FST13-661
Articles are hosted by Taylor and Francis Online.
In order to investigate the effect of nickel saturation on the corrosion of Type 316L stainless steel (SS 316L) by Pb-17Li, a SS 316L test capsule was fabricated and filled with Pb-17Li along with some Ni chunks. The system was maintained at a temperature gradient of 923 to 623 K for 3200 h. Characterization of SS 316L tube samples from various temperature locations by an electron probe microanalyzer revealed that dissolution of Ni from the steel matrix could be effectively suppressed in this manner, though leaching of Cr and Fe could not be prevented. No nickel depletion from SS 316L was observed in the tube at the higher temperature (923 K), even after 3200 h, whereas nickel encrustations were found in low-temperature areas. The saturation of Pb-17Li by the added nickel had possibly prevented Ni dissolution from the SS 316L surface, and thereby, the formation of a porous corroded layer could be avoided.