ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
P. N. Maya
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 325-331
Technical Paper | doi.org/10.13182/FST13-664
Articles are hosted by Taylor and Francis Online.
Molecular dynamics simulations of energetic bombardment of amorphous hydrocarbon (a-C:H) materials by Ar ions up to 200 eV in energy have been performed. In addition to erosion of carbon and hydrogen atoms, the Ar bombardment causes damage and subsequent structural changes in the sample. We present a model based on potential energy analysis to characterize the damage and structural changes. The model identifies both the newly created damage due to bombardment and the local restructuring and subsequent annihilation of already existing damage. The analysis shows that although a large number of carbon atoms are displaced during the collision cascade, most of them do not contribute to the local structural change. Most of the damage creation and restructuring of the local neighborhood happens within the ion range, and, at high energy (200 eV), the restructuring continues beyond the ion range.