ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
T. Dash, B. B. Nayak, M. Abhangi, R. Makwana, S. Vala, S. Jakhar, C. V. S. Rao, T. K. Basu
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 241-247
Technical Paper | doi.org/10.13182/FST13-663
Articles are hosted by Taylor and Francis Online.
Because of their desirable structural properties, WC, WC+B4C, and WC + TiC are possible materials for use in plasma-facing components of fusion reactors like tokamaks. In this work, seven different compositions of WC-W2C composites have been prepared (30 to 50 at. % C) by an arc plasma melting technique followed by furnace cooling. Efforts have been made to produce a composite that is very hard and tough and that has a high neutron absorbing capacity by adding B4C and TiC (5 to 15 wt% each) to the starting WC powder. Microstructures of the composites were studied by field emission scanning electron microscopy and transmission electron microscopy. Multiphasic structures of the composites exhibited an absence of pores. The WC + TiC and WC + B4C composites showed improvements in microhardness over pure WC. Typical samples of WC-W2C, WC + B4C, and WC + TiC have been characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller techniques for analysis and correlation of material properties. When irradiated with 14-MeV D-T neutrons, it was observed that the pure WC melt-cast product exhibited a linear neutron absorption coefficient of 0.172 cm−1. The absorption coefficient was found to be a maximum (0.255 cm−1) for 5 wt% B4C added to WC as against Type 316LN stainless steel, which showed a value of 0.078 cm−1.