ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
A. Abhishek, M. Warrier, E. Rajendra Kumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 222-228
Technical Paper | doi.org/10.13182/FST13-655
Articles are hosted by Taylor and Francis Online.
Understanding helium transport and clustering is important for full understanding of fusion material degradation due to neutron irradiation. Molecular dynamics simulations are carried out to study the clustering of He in FeCr alloy. The simulations are performed for He fractions from 0.1 to 0.4 in FeCr alloy at temperatures ranging from 300 to 800 K. It is observed that a minimum of five He atoms is required to form a stable cluster at temperatures in the range 700 to 800 K. An He5-(Fe/Cr)2-V2 complex is found to exist at 300 K. At higher temperatures, the cluster displaces the Fe and Cr atoms from their lattice sites, forming an He5-V complex. The constituent element of the displaced material is then found to migrate inside the system, depending upon the conditions prevailing there.