ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Kumar, C. S. Viswanadham, S. Bhattacharya, S. B. Roy, K. Bhanumurthy, G. K. Dey
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 199-204
Technical Paper | doi.org/10.13182/FST13-650
Articles are hosted by Taylor and Francis Online.
India is a partner in ITER and plans to test its lead lithium ceramic blanket test blanket module. This component is embedded with a large number of cooling channels of different profiles and, therefore, is a challenging component to fabricate. Cooling channel reconstruction by employing high-power laser welding provides a promising scheme to fabricate this component. Cooling channel reconstruction was demonstrated in American Society for Testing and Materials A387 Gr91 steel using high-power CO2 laser welding. A scheme for fabrication of scale models of different subcomponents, like the first wall (FW) and inner back plate, and assembly of the two subcomponents employing the cooling channel reconstruction scheme was demonstrated. The steady-state temperature field around the weld joint was computed using the welding and heat treatment simulation solution package SYSWELD. These weld joints were characterized for microstructure at different length scales, microhardness, and room-temperature tensile properties. This paper presents the scheme used for cooling channel reconstruction and the results of the weld joint characterization. The scheme for fabrication of the scale model of the FW, the inner back plate, and joining of the two subcomponents using the cooling channel reconstruction approach is also described in this paper.